CANONICAL AND JOIN HYPERGROUPS

BY

CHRISTOS G. MASSOUROS

1. Introduction. The canonical hypergroups are a special type of hypergroups (completely regular, according to Mattey's definition [15]). Initially they derived from the additive part of the hyperfield and the hyperring [12], [13] and later on from other different ways, as well (e.g. [36], [38]). The name canonical has been given to these hypergroups by J. Mattey, the first one who has studied them [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32]. A canonical hypergroup is a hypergroupoid \((H, +)\), that for every \(x, y, z \in H\) satisfies the axioms:

- \(CH_1\). \(x + y = y + x\) (commutativity)
- \(CH_2\). \(x + (y + z) = (x + y) + z\) (associativity)
- \(CH_3\). there exists an element \(0 \in H\) for which \(0 + x = x\)
- \(CH_4\). for every \(x \in H\) there exists one and only one element \(x' \in H\), denoted by \(-x\), such that \(0 \in x + (-x)\).
- \(CH_5\). \(z \in x + y \implies x \in z + (-y)\) (reversibility)

It has been proved that axiom \(CH_5\) is equivalent to:

- \(CH_5'\). \((\forall (x, y) \in H^2)[-(x + y) = -x - y]\) as well as to:
- \(CH_5''\). \((\forall (x, y, z, w) \in H^4) [(x + y) \cap (z + w) \neq \emptyset \implies (y - z) \cap (w - x) \neq \emptyset]\)

If from the axioms of the canonical hypergroups, the commutativity is left out, there derives another class of very interesting hypergroups, the quasicanonical hypergroups (by Bonansinga and Corsini) or polygroups (by Comer). Examples of such hypergroups are:

i. The collection \(G/H\) of all double cosets of a subgroup \(H\) of a group \(G\) [10]

ii. The set of all the conjugacy classes of a group \(G\) as it is defined in [15], [3], [9].
Bonanno and Corsini ([1], [2], [8]) studied the structure of these hypergroups and their subhypergroups, while Massouros ([17]) studied their congruence relations and their homomorphisms. A dual equivalence between the category of polygroups and the category of complete atomic integral relation algebras has been established by Comer in [4], where other examples of polygroups are given. Also in [6] the notion of conjugacy of polygroups is given and it is being proved that the conjugacy relations of a polygroup form a complete lattice with a very rich structure. The lattices are related to some very difficult problems involving groups. Moreover in [5] the notion of a partial multy-valued loop is given. This notion is like a "hypercategor" and it is being proved that a polygroup can be obtained as a special case. Furthermore Corsini and De Salvo have presented studies on the feebly quasicanonical hypergroups, which are a generalisation of quasicanonical ones [8].

Closely related to the canonical hypergroups are the join hypergroups. A join hypergroup is a commutative hypergroup \((H, +)\), which for every \(x, y, z, w \in H\) satisfies the axiom:

\[- a \ast b \cap c \ast d \neq \emptyset \implies (a + d) \cap (b + c) \neq \emptyset \]

where \(a \ast b = \{x | a \in x + b\}\) (induced hypercomposition).

It can be proved that every canonical hypergroup is also join and moreover that if a join hypergroup has a scalar neutral element, then it is a canonical one [7], [16].

The above axiom \((J)\) has been introduced by W. Prenewitz, who has used a special type of join hypergroup, that he named join space, for a very important study of several types of geometries with the use of methods and techniques from the theory of the hypergroups [33], [34], [35], having produced many essential and interesting results [36], [37].

2. Canonical hypergroups. In this paragraph there appear certain fundamental properties of the canonical hypergroups deriving from the study of Witts on this subject. We use the symbol "\(+\)" for the hypercomposition, as it appears in his study, due to the association of the canonical hypergroup with the hyperfield and with its valuation.

Example 2.1. A canonical hypergroup can derive from every set \(H\), which is totally ordered and symmetrical around a center (denoted by \(0 \in H\)) in which the obvious symmetrical partition is considered:

\[H = H_1 \cup \{0\} \cup H_2 = H^- \cup \{0\} \cup H^+ \quad (H_1 = H^-, H_2 = H^+) \]

such that: \(x < 0 < y\), for every \(x \in H^-\), \(y \in H^+\) and \(x \leq y \implies -y \leq -x\) for every \(x, y \in H\), where \(-x\) is the symmetrical of \(x \in H\) with regard to 0.

Such a set becomes a canonical hypergroup if the following, commutative by definition, hypercomposition is introduced:
\[y + x = x + y = y, \text{ if } |x| < |y|, \quad x + x = x, \quad x - x = [-|x|, |x|]\]
(where obviously \(|x| = x\), if \(x \in H^+\), \(-x\) if \(x \in H^-\) and 0, if \(x = 0\)).

A canonical hypergroup can possibly have more scalar elements, (i.e. elements for which the result of the hypercomposition with any other element of the hypergroup is a singleton) other than zero. Relatively we have:

Proposition 2.1. \(x \in H\) is a scalar element if and only if \(x - x = 0\).

Remark 2.1. The cancellation law is not generally valid in a canonical hypergroup. From axiom \(C''\) it derives only that \(x + y = x + z \implies (x - x) \cap (y - z) \neq \emptyset\). On the contrary, the cancellation law holds if \(x\) is a scalar element.

Proposition 2.2. The set \(S\) of the scalar elements of \(H\) is an abelian group.

The heart of a semiregular hypergroup \(H\) is the union of all the products of finite number of factors, each containing at least one left unit of \(H\) and at least one of its right units. The heart \(\Omega\) of a canonical hypergroup \((H, +)\) is the union of all the sums \((x_1 - x_1) + \cdots + (z_i - x_i)\), where \(i\) is an arbitrary positive integer and the elements \(x_1, \ldots, z_i\) are independently chosen from \(H\). \(\Omega\) is the least in the sense of inclusion subhypergroup, such that the quotient \(H/\Omega\) is a group. If instead of \(H\) we consider an arbitrary subset \(X \subseteq H\), we denote these unions by \(\Omega(X)\). Also \(\Omega(H) = \Omega\). Relatively we have:

Proposition 2.3. For every non void subset \(X\) of a canonical hypergroup \(H\), \(\Omega(X)\) is a subhypergroup of \(H\) and \(0 \in \Omega(X)\).

With regard to the subhypergroups of \(H\) we have:

Definition 2.3. A subhypergroup \(h\) of a canonical hypergroup \(H\) is called a canonical subhypergroup of \(h\), if it is a canonical hypergroup itself and with the same zero (thus \(0 \in h\)).

It has been proved that every subhypergroup of \(H\) containing the zero element is a canonical one. Therefore the above subhypergroups \(\Omega(X)\) are canonical. Furthermore, greatly important in the study of the subhypergroups of a hypergroup are the closed and the invertible subhypergroups. Let us remind here that right (resp. left) closed subhypergroup of a hypergroup \(H\) is a subhypergroup \(h\) for which \(ah \cap h = \emptyset\) (resp. \(ha \cap h = \emptyset\)), for every \(a \in H \setminus h\). Moreover \(h\) is called right invertible if \(ah \cap a'h = \emptyset\), for every \(a, a' \in H\) with \(ah \neq a'h\). (resp. is the definition of the left invertible). Also, since a closed (and much more an invertible) subhypergroup of a hypergroup contains all its units, in the canonical hypergroups, their
unique unit (the zero element) belongs to such subhypergroups. Thus every
closed subhypergroup of a canonical hypergroup is a canonical one. The
converse is valid as well: Every canonical subhypergroup is invertible (and
consequently closed).

The invertible subhypergroups now, define a partition in the hyper-
group. So for the canonical hypergroups we have:

Proposition 2.4. For every canonical subhypergroup h of H the
set of the classes H/h is a canonical hypergroup with hypercomposition:

$$(x + h) \oplus (y + h) = \bigcup_{z \in x + y} (z + h).$$

H/h is an abelian group if and only if $h \subseteq \Omega$.

In the theory of hypergroups, (contrarily to the theory of groups),
the intersection of two subhypergroups, if not void, is generally a semi-
subhypergroup. But the intersection of two closed subhypergroups, if again
it is not void, is always a closed subhypergroup. Thus the set of the canonical
subhypergroups of a canonical hypergroup H is a complete lattice, since the
canonical subhypergroups are closed and their intersection always contains
the zero element. From this derives that for a given subset X of H there
always exists the least (in the sense of inclusion) canonical subhypergroup
\overline{X} of H which contains X. This subhypergroup \overline{X}, is the subhypergroup
generated by X. If $X = \emptyset$, then, obviously, $\overline{X} = \{0\}$. For $X \neq \emptyset$ we have:

Proposition 2.5. The canonical subhypergroup \overline{X} of H, which is
generated by a non empty subset X of H, is the union of the sums of finite
number of elements of the union $-X \cup X$.

Now, if X is a singleton, then the canonical hypergroup generated from
it, is called monogene. So a canonical subhypergroup h of H is monogene
if there exists $x \in H$ such that $h = \{x\}$. If $H = \{x\}$, then H itself is called
monogene. Observing now that:

$$mx + nx = \begin{cases} (m + n)x, & \text{if } mn > 0 \\ (m + n)x + \min\{|m|, |n|\}(x - x), & \text{if } mn < 0 \end{cases}$$

we have:

Proposition 2.6. $\overline{\{x\}} = mx + n(x - x)$, for every $x \in H$ and
$m, n \in \mathbb{Z}$.

Since $-(x - x) = x - x$, we can assume that $(m - n) \in \mathbb{Z} \times \mathbb{N}$ instead
of $\mathbb{Z} \times \mathbb{Z}$. With the use of this Proposition can be derived the definition
of the order of an element \(x \). Two cases can appear, from which the one excludes the other:

I) For every \((m, n) \in \mathbb{Z} \times N \) with \(m \neq 0 \), \(0 \not\in mx + n(x - x) \), in which case \(x \), as well as \(\overline{x} \) is said to be of infinite order denoted by \(\omega(x) = +\infty \).

Proposition 2.7. \(\omega(x) = +\infty \) if and only if \(m'x \cap m''x = \emptyset \), for every \(m'm'' \in \mathbb{Z}, m' \neq m'' \).

II) There exists \((m, n) \in \mathbb{Z} \times N \), with \(m \neq 0 \), such that \(0 \in mx + +n(x - x) \). Let \(p \) be the minimum positive integer for which there exists \(n \in N \), such that \(0 \in px + n(x - x) \).

Proposition 2.8. For a given \(m \in \mathbb{Z} \) there exists \(n \in N \) such that \(0 \in mx + n(x - x) \), if and only if \(m \) is divided by \(p \).

If \(m = kp(k \in \mathbb{Z}) \), let \(q(k) \) be the minimum non-negative integer such that \(0 \in kpz + q(k)(x - x) \). The \(q \) is a function from \(\mathbb{Z} \) to \(N \). Then the pair \(\omega(x) = (p, q) \) has been called order of \(x \) and \(\overline{x} \) and more precisely, \(p \) is the principal order of \(x \) and \(q \) is the associative order of \(x \).

Moreover J. M i t t a s has studied the valuation of the canonical hypergroups, having developed a theory analogous to the one of the valuated groups, which is much more complicated though, due to the special character of the hypercomposition, which consists the basis for the study of the valuation. Later on J. M i t t a s has generalized his own theory with the introduction of the (simply and strictly) hypervaluated canonical hypergroups, which he has also studied. In the following we will see a few introductory elements of this theory, starting with the definition of the ultrametric space [11].

Definition 2.4. Ultrametric distance over a set \(E \), is a mapping \(d: E \times E \to R_+ \) that satisfies the conditions:

i. \(d(x, y) = 0 \iff x = y \ \forall x, y \in E \)

ii. \(d(x, y) = d(y, x) \ \forall x, y \in E \)

iii. \(d(x, y) \leq \max\{d(x, z), d(z, y)\} \ \forall x, y, z \in E \)

The pair \((E, d)\) is called ultrametric space.

Definition 2.5. A canonical hypergroup \(H \) is called ultrametric, if an ultrametric distance has been defined on \(H \), satisfying the conditions:

\(h_1 \). For every \(x, y \in H \) the sum \(x + y \) is a circle of the ultrametric space \((H, d)\) with radius analogous to the max \(\{d(0, z), d(0, y)\} \), where 0 is the zero element of \(H \). That is there exists a semi-real number \([11] 0 \leq p < 1 \) of type 0 or \(-\), such that \(x + y = C(z, p \max\{|x|, |y|\}) \). \(z \) is an arbitrary element of \(x + y \) and the valuation of the element \(x \in H \), denoted by \(|x| \), is the distance
\(d(0, x) \). The function \(| \cdot | : H \to R_+ \) is called valuation of \(H \), correlated to the ultrametric distance \(d \).

\(h_2 \). For every \(x, y, a \in H \) such that \((x + a) \cap (y + a) = \emptyset \) holds:

\[d(x, y) = d(x + a, y + a) \]

Every such ultrametric distance on \(H \) is called compatible to the structure of the canonical hypergroup \(H \).

Let \((H, +, d)\) be a canonical ultrametric hypergroup. Then the valuation \(| \cdot | \), which is correlated to the ultrametric distance \(d \), satisfies the properties:

i. \(|x| = 0 \iff x = 0\)
ii. \(|x| = |-x|\), for every \(x \in H \)
iii. For every \(x, y \in H \), with \(x \neq y \) the set \(|x - y|\) is a singleton
iv. For every \(x, y \in H \) holds: \(|x + y| \leq \max\{|x|, |y|\}\)
v. There exists a semi-real number \(r \geq 0 \) of type 0 or \(-\) such that for every \(x, y, z \in H \), with \(z \in x + y \) and \(|w - z| \leq p \max\{|x|, |y|\}, w \) belongs to \(x + y \).

The converse is also valid, that is every canonical hypergroup \((H, +)\) in which a function \(| \cdot | : H \to R_+ \) has been defined and which satisfies the above properties (i) – (v) is ultrametric with ultrametric distance:

\[d(x, x) = 0 \text{ and } d(x, y) = |x - y|, \text{ for } x \neq y \]

This ultrametric function \(| \cdot | \), is called valuation of \(H \) and \(d \) is called ultrametric hyperdistance correlated to the valuation \(| \cdot | \). The canonical hypergroup is then called valuated. So the notions of the valuated and the ultrametric canonical hypergroup are the same.

The generalization of the notion of the valuation of the canonical hypergroups to the notion of the hypervaluation has been done in the same way, but with the use of a totally ordered set \(\Omega \) with minimal element, denoted by \(\emptyset \), instead of the set \(R_+ \). This hypervaluation is called simple if for every \(x, y \in H \) the \(x + y \) is a circle of the ultrametric space \((H, d)\), and strict if it satisfies the axiom \((h_1)\), but with coefficient a semi-real number \(p \) of type 0 or \(-\) of the \(K \cup r e p a \)’s complement \(\Omega \) of \(\Omega \) [14].

Proposition 2.9. Every valuated (resp. strictly hypervaluated) canonical hypergroup \((H, +)\) satisfies the following purely algebraic properties:

\(S_1. \) if for \(x, y \in H \) holds \(x \in x + y \), then \(x + y = x \)

\(S_2. \) for every \(x, y, z, w \in H \), such that \((x + y) \cap (z + w) \neq \emptyset \)

either \(x + y \subseteq z + w \), or \(z + w \subseteq x + y \) is valid

\(S_3. \) for every \(x, y, z, w \in H \) such that \(0 \notin x + y \) and \(z, w \in x + y \) holds
\[z - z = w - w \]

S4. If \(x \in z - z \) and \(y \notin z - z \), then \(x - x \subseteq y - y \)

A canonical hypergroup that also satisfies the conditions \((S_1)\) and \((S_2)\) is called **strongly** canonical, while if it satisfies \((S_1) - (S_4)\) is called **superiorly** canonical.

Theorem 2.1. A necessary and sufficient condition for a canonical hypergroup to be strictly hypervaluatable (or valuatable) is to be superiorly canonical.

3. **Join hypergroups.** Let us also start this part with two examples:

Example 3.1. Let \((V, +)\) be a vector space over a valuanted field \((F, +, \cdot)\). If the hypercomposition:

\[xy = \{ kx + \lambda y | k, \lambda \in F, k, \lambda > 0, k + \lambda = 1 \} \]

is introduced in \(V \), then \(V \) becomes a join hypergroup. This example gives a way similar to the one that W. Prenewitz has used in order to introduce the hypercomposition into geometry.

Example 3.2. Let \((S, A, s_0, F, \delta)\) be an automaton. The language \(L \) that the automaton accepts is a special subset of the set of the words \(A^* \), over the alphabet \(A \), which is described by a regular expression. The definition of the regular expressions requires the use of the bisets \(\{ a, b \} \), where \(a, b \in A \), introducing thus in \(A^* \) the hypercomposition \(x + y = \{ x, y \} \) with \(x, y \in A^* \). With this hyprecoposition \(A^* \) becomes a join hypergroup.

The theory of the hypergroups has been introduced into the theory of languages and automata, by G.G. Massouros and J. Mittestas [19]. The hypergroups that mainly appear in the theory of languages are the join ones, while in the theory of automata usually emerge canonical ones. We must mention though, that other hypercompositional structures, than the hypergroups, have also been introduced in languages and automata (e.g. see [20], [21]).

The properties of the join spaces and, next, of the join hypergroups have been studied from many researchers. So, except W. Prenewitz’s work, papers on this area have been written by J. Antonio, Ch. Massouros, G. Massouros and J. Mittestas. Many and interesting results have derived, regarding both, its algebraic structure and its applications on geometry, as well as on the theory of languages and automata.

Let us start with a property regarding the relation between the two hypercompositions. As it is known [16], in every hypergroup we have: \((a \cdot b) : c = a : (c \cdot b)\). In the join hypergroups though, the following properties for the sets \((a \cdot b) : c\) and \((a \cdot d) : (b \cdot c)\) have also been proved [16]:
Proposition 3.1. In a join hypergroup the followings statements are valid:

i) \((a; c) \cdot b \cup (b; c) \cdot a \cup a; (c; b) \cup b; (c; a) \subseteq (a \cdot b); c\)

ii) \((a; b) \cdot (d; c) \cup (a; c) \cdot (d; b) \cup (a; b); (c; d) \cup (a; c); (b; d) \cup (d; c); (b; a) \cup (d; b); (c; a) \subseteq (a \cdot d); (b \cdot c)\)

It is interesting to remark that in terms of the high school algebra, the first part of these relations describes all the possible ways that the second part can be written. Also seen on the plane and in simple words, (i) of this proposition implies that the second term of the relation gives all the points into the area \(A\) (defined by the half lines \(a; c, b; c\) and the segment \(ab\)) of the plane, while the first term just leaves out point \(k\) of this area. Remember that [Example 3.1] \(ab\) is the open segment through \(a\) and \(b\) and \(a; c\) is the open half line from \(a\), as in the following figure:

![Diagram](image)

Regarding the subsets of a join hypergroup, the ones with greatest interest are the semi-subhypergroups and the closed subhypergroups.

A **semi-subhypergroup** of a hypergroup \(H\) is a non empty subset \(h\) of \(H\) for which \(xy \subseteq h\), for every \(x, y \in h\) (while in a subhypergroup: \(xh = hx = h\), for every \(x \in h\)). If \(E\) is a subset of \(H\), \([E]\) denotes the least semi-subhypergroup which contains \(E\). In the case of the first example the semi-subhypergroups correspond to the convex subsets of \(V\). Thus from the study of the semi-subhypergroups of the join hypergroup there results for the convex sets of \(V\). For instance, in the join hypergroups we have:

Proposition 3.2. ([16]) Let \(h_1, h_2\) be two disjoint semi-subhypergroups of a join hypergroup \((H, \cdot)\) and let \(x\) be an idempotent element of \(H\), which does not belong to the union \(h_1 \cup h_2\). Then either \([h_1 \cup \{x\}] \cap h_2 = \emptyset\) or \([h_2 \cup \{x\}] \cap h_1 = \emptyset\).

Moreover, since \(V\) can be endowed with the join hypergroup struc-
ture, as in Example 1, we can use the above Proposition, expressed in the terminology of the vector spaces, and get:

Corollary 3.1. ([16]) If A, B are disjoint convex sets in a linear space V, and x is a point not in their union, then either the convex envelope of $A \cup \{x\}$ and B are disjoint, or the convex envelope of $B \cup \{x\}$ and A are disjoint.

This is nothing else but **K a k a t a n i's Lemma.** Analogously, **Theorem of S t o n e** can be derived from the following Proposition ([16]):

Proposition 3.3. Let H be a join hypergroup, every element of which is idempotent. Also let h_1, h_2 be two disjoint semi-subhypergroups. Then there exist disjoint semi-subhypergroups H_1, H_2, such that $h_1 \subseteq H_1$, $h_2 \subseteq H_2$ and $H = H_1 \cup H_2$.

If now h_1 and h_2 are two semi-subhypergroups of a join hypergroup, then $h = h_1 : h_2$ is also a semi-subhypergroup, while it is a closed subhypergroup if $h_1 = h_2$, which contains h_1 as well. As it is known [18] the closed subhypergroups of a hypergroup always contain the result of the induced hypercomposition. Thus in the case of the join hypergroups the join axiom is always valid inside the closed subhypergroups, and from this point of view the closed subhypergroups are join hypergroups themselves.

Proposition 3.4. A subset h of a join hypergroup H is a closed subhypergroup if:

i. $x : y \subseteq h$ for every $x, y \in h$

ii. $xx \subseteq h$ for every $x \in h$

Proposition 3.5. Let h_1 and h_2 be two closed subhypergroups of a join hypergroup H such that $h_1 \cap h_2 \neq \emptyset$. Then:

i. $h_1 : h_2 = h_2 : h_1$ and

ii. $h_1 : h_2$ is a closed subhypergroup of H.

Proposition 3.6. If H is a join hypergroup and $A = \{a_1, \ldots, a_n\}$ a subset of H, then the closed subhypergroup which is generated by A is:

$$< a_1, \ldots, a_n > = ([a_1] \ldots [a_n]) : ([a_1] \ldots [a_n])$$

where $[a_i]$, $i = 1, \ldots, n$ is the semi-subhypergroup generated by a_i.

We remind that $[a] = a^1 \cup a^2 \cup \cdots \cup a^k \cup \cdots$, where $a^1 = \{a\}$, $a^2 = a \cdot a$, $a^s = a \cdot a^{s-1}$, for every integer $s \geq 2$.

The closed subhypergroups of a join hypergroup define a partition in the hypergroup. More precisely, if H is a join hypergroup and h a closed subhypergroup of H, then $h : x \cap h : y \neq \emptyset \Rightarrow h : x = h : y$. So we have:
Proposition 3.7. Every closed subhypergroup \(h \) of a join hypergroup \(H \) defines an equivalence relation mod \(h \) in \(H \) (which is also normal) as follows: \(x \equiv y \pmod{h} \iff h: x = h: y \)

Proposition 3.8. The set \(H/h \) equipped with the hypercomposition:
\[
h : x * h : y = \{ h : w \mid w \in xy \}
\]
is a canonical hypergroup, having \(h \) as a neutral element.

From the above Proposition becomes clear the close relation between the canonical and the join hypergroups. More precisely we have:

Proposition 3.9. A join hypergroup is canonical if and only if it has a scalar neutral element.

It is possible though for a join hypergroup to have a non scalar neutral element. Such hypergroups, which are very important for the study of the theory of the languages are the fortified join hypergroups, introduced by G. Massouros and J. Mitas:

Definition 3.1. A fortified join hypergroup is a join hypergroup \((H, +) \) with a unique element \(0 \), called the zero element of \(H \), such that \(0 + 0 = 0 \), \(x \in x + 0 \) for every \(x \in H \) and for every \(x \in H \setminus \{0\} \) there exists one and only one element \(-x \in H \setminus \{0\} \), the opposite of \(x \), such that: \(0 \in x + (-x) \).

The canonical and the join hypergroups, as well as the area between them seem to be of great interest for both, pure algebraic study and development of applications, that might, someday make this theory a necessary part of the technological research. In the meanwhile there remains a lot of work to be done.

REFERENCES

12. Krasner, M. - Approximation des corps valués complets de caractéristique p ≠ 0 par ceux de caractéristique 0, Colloque d' Algebre Superieure (Bruxelles, Decembre 1956), CBRM, Bruxelles, 1957.

33. P r e n o w i t z, W. – Projective Geometries as multigroups, Amer. J. Math. 65, pp. 235-256, 1943.
37. P r e n o w i t z, W. and J a n t o s c i a k, J. – Geometries and Join Spaces, Reine Angew. Math. 257, pp. 100-128, 1972.

Received : 4.1.1995
Revised : 18.1.1996