Proceedings

of the

26th Annual Iranian Mathematics Conference
Shahid Bahonar University of Kerman
28-31 March 1995

VOLUME 2

English Articles

Editors:

S.H. Javadpour & M. Radjabalipour

Department of Mathematics
Shahid Bahonar University of Kerman
Kerman, Iran

Shahid Bahonar University of Kerman, Mahani Mathematical Research Center,
Iranian Mathematical Society, 1995
A New Approach to the Theory of Languages and Automata

G.G. Massouros
54, kilous st., 155 61 Cholargos
Athens, GREECE

Abstract

In this paper appears an approach to the theory of Languages and Automata with the use of tools and methods from the Theory of the Hypercompositional Structures. The set of the words V^* over an alphabet V, with the compositional laws from the Theory of Languages and the hypercompositional laws that are being introduced, becomes a new hypercompositional structure, the hyperringoid. Its action as a set of operators or hyperoperators on a given set is being presented along with the notions of the hypermoduloid and the hypermoduboid. The study of this structure gives interesting results for both theories.

It is known that a language whose strings are written using letters from an alphabet V is defined as a subset of the free monoid V^*, which is generated by V. It is also known that the languages that are accepted from finite automata are the regular sets over V. The regular sets are represented by regular expressions. The definition of the regular expressions over V, requires the introduction of the bisets (x,y) from V^*. This leads to the definition of the following hypercomposition in V^*: $x + y = (x,y)$ V^*, endowed with this hyperoperation becomes a join hypergroup [3]. The operation of V^*, i.e. the concatenation of the words, is bilaterally distributive with regard to this hyperoperation. So a new hypercompositional structure, the Join Hyperringoid came into begin [5].

Definition 1. A hyperringoid is a non void set Y with an operation \cdot and a hyperoperation \cdot^+, that satisfy the axioms:

i. (Y, \cdot) is a hypergroup

ii. (Y, \cdot) is a semigroup

iii. The operation is bilaterally distributive to the hyperoperation.

If (Y, \cdot) is a join hypergroup, then the hyperringoid is called Join hyperringoid. The special join hypergroup which derives in this way from the theory of languages was named B-hypergroup and the respective hyperringoid, B-hyperringoid.

Another important notion in the theory of languages, is the notion of the empty set of words. Actually the use of the "null word" as well as other reasons, e.g. the necessity of the use of the symbol $<SOS>$ (Start Of String) is the electronic realization of the automaton, which acts as an annihilator (since it leads from any state to the start state), has led to the introduction of a non scalar neutral element in the join hypergroup. Thus appeared the fortified join hypergroup [3]. This new hypercompositional structure $(H, +)$ satisfies the axioms:

1. There exists a unique neutral element, denoted by 0, such that $x + 0 = x$, for every $x \in H$ and $0 + 0 = 0$.

2. For every $x \in H \setminus \{0\}$, there exists one and only one element $x' \in H \setminus \{0\}$ (denoted by $-x$), such that $0 \in x + x'$.

Especially, for the case of the languages, the fortified join hypergroup, which corresponds to them and which motivated the development of these new structures is the dilated B-hyperringoid. In this hypergroup every element is selfopposite. More precisely the hypercomposition of this structure is being defined in the following way: $x + y = \{x, y\}$, if $x \neq y$, and $x + x = \{0, x\}$.

The corresponding hyperringoid of all the words, the null word included, is called dilated B-hyperringoid. Generally, if the hypercompositional part of a hyperringoid is a fortified join hypergroup, then it is called fortified join hyperringoid or join hyperring [5].

The hyperringoids which derive from the set of the words V^*, have the property that every one of their elements has a unique factorization into irreducible elements (which are the letters of the alphabet).

Definition 2. A linguistic hyperringoid (resp. dilated linguistic hyperringoid) is a unitary B-hyperringoid (resp. dilated B-hyperringoid) which has a finite prime subset P and which is non commutative for card $P > 1$.

Notice that every B-hyperringoid is not a linguistic one. For example the set of the complex numbers, with the usual multiplication and hypercomposition $a + b = (a; b)$. An interesting linguistic hyperringoid appears in the Proposition:

Proposition 1. The set N of the natural numbers is a linguistic and hyperoperation with prime subset the singleton (1) and with operation the $xy = x + y$.
and hyperoperation the \(x + y = \{x, y\} \), for every \(x, y \in N \).

This linguistic hyperringoid is used in the counters [6].

Hypercompositional structures have not been introduced only in the set of the words. Hypergroup have also been used in the automata in order to describe their structure and operation. More precisely the set of the states of an automaton, endowed with properly defined hypercomposition becomes a hypergroup.

Such hypergroups, that are called attached hypergroup to the automaton, are (a) the attached order hypergroup, (b) the attached grade hypergroup, (c) the attached hypergroup of the paths and (d) the attached hypergroup of the operation. Especially the attached order hypergroup and the attached grade hypergroup lead to the creation of the minimum automaton that accepts the same language with the initial one [2], [5].

Beyond the hypercompositional structures that are being "attached" to the set of the words over an alphabet, or to the set of the states of an automaton, there have also been developed hypercompositional structures that derive from the operation of the words on the states of the automaton [4]. Let's see some definitions and next let's present a series of Theorem which, when applied to the special case of the B-hyperringoids they give the theory of Nerod-Myci.

Definition 3. Let \(M \) be an arbitrary set and \((Y, +, \cdot) \) a hyperringoid. \(Y \) is a set of operators over \(M \), if there exists an external operation from \(M \times Y \) to \(M \), that satisfies the axiom:

\[
(\alpha \cdot \beta) \cdot \sigma = \alpha \cdot (\sigma \cdot \beta) \quad \sigma, \alpha, \beta \in Y
\]

If there exists an external hyperoperation from \(M \times Y \) to \(P(M) \) satisfying the above axiom, then \(Y \) is a set of hyperoperators. In the first case we say that \(Y \) acts through an operation, while in the second one, through a hyperoperation.

Definition 4. If \(M \) is a hypergroup and \(Y \) is a hyperringoid of operators over \(M \) such that

i. \((a + t) \cdot \lambda = a \cdot \lambda + t \cdot \lambda, \)

ii. \(s \cdot (\lambda + \kappa) \subseteq s \cdot \lambda + s \cdot \kappa, \)

iii. \(s \cdot (\lambda \cdot \kappa) = (s \cdot \lambda) \cdot \kappa, \)

for every \(\lambda, \kappa \in Y \) and \(s, t \in M \), then \(M \) is called (right) hypermoduloid over \(Y \). If \(Y \) is a set of hyperoperators, then \(M \) is called supermoduloid. If \((Y, +, \cdot) \) is a fortifed hyperringoid and \((M, +, \cdot)\) is a fortifed join hypergroup, then \(M \) is called joint hypermodule, resp. join supermodule, if in addition to the above, the following axiom holds:

\[s \cdot 0 = 0, \text{ resp. } j \cdot 0 = 0 \cdot s = 0.\]

Next let \(M \) be an arbitrary set with operators or hyperoperators from a hyperringoid \(Y \) and let \(s \) be an element of \(M \). To every element \(\alpha \) of \(Y \) we map the \(\alpha \cdot s \cdot \alpha \). If \(Y \) is a set of operators, then this mapping (that from now on will be denoted by \(\phi \)) is a function from \(Y \) to \(M \), while if \(Y \) is a set of hyperoperators, then \(\phi \) is a function from \(Y \) to \(P(M) \), that is:

\[\phi : Y \rightarrow M \quad \text{such that } \phi(a) = sa \]

or

\[\phi : Y \rightarrow P(M) \quad \text{such that } \phi(a) = sa \]

So the definition:

Definition 5. A subset \(L \) of \(Y \) is called \((s, F)\)-acceptable from \(M \), or simply acceptable when there is no fear of a mix up, if there exists \(s \in M \) and \(F \subseteq M \) in the case of external operation, or \(F \subseteq P(M) \) in the case of external hyperoperation, such that: \(\phi a^{-1}(F) = L \)

In the following also appears an important, relation, the homomorphic one [1] Let \(H, H' \) be two hypergroupoids and let \(R \subseteq H \times H' \). \(R \) will be called homomorphic if \((I)\) For every \((a_1, b_1) \in R \) and \((a_2, b_2) \in R \) holds:

\[\forall x \in a_1 + a_2)(\exists y \in b_1 + b_2)([x, y] \in R)\]

and

\[\forall y' \in b_1 + b_2)(\exists x' \in a_1 + a_2)', ([x', y] \in R)\]

Furthermore, if \(Y \) and \(Y' \) are two hyperringoids, then \(R(\subseteq Y 	imes Y') \) will be called homomorphic if apart from \((I)\) the following is also valid:

\((II)\) For every \((a_1, b_1) \in R \) and \((a_2, b_2) \in R \) holds:

\[(a_1a_2, b_1b_2) \in R.\]

Next we observe that if an equivalence relation \(R \) over a hyperringoid \(Y \) satisfies the property:

\((II')\) \((x, y) \in R \) and \(w \in Y \rightarrow (xw, yw) \in R \) and \((ux, uy) \in R \) then \(R \) satisfies \((II)\) and vice versa.

It is possible though that an equivalence relation satisfies only one of the two conditions of \((II')\). In this case it is called right (or resp. left) congruence relation as to the operation.

Proposition 2. If \(R \) is a homomorphic equivalence relation in a hyperringoid \(y \) as to the hyperoperation and a right congruence as to the multiplication, then the quotient set \(Y / R \) becomes a (right) hypermoduloid over \(y \).

Thus, according to whether \(rk(R) \) is finite or not, the deriving hypermoduloid will respectively be finite or not. So if \(Y \) is a linguistic hyperringoid and if \(rk(R) < \infty \) then \(Y / R \) is a finite hypermoduloid. The elements of such a hypermoduloid can be considered as the states of an automaton, which is completely defined only when one of the classes of \(Y / R \) is defined as the start state and if a set of these classes is considered to be the set of the final states. Therefore it is possible, for the hypermoduloid deriving from certain equivalence relations, to lead to an automaton.

Theorem 1. Let \(L \) be a subset of a hyperringoid \(Y \). Then the relation \(RL \) defined from:

\[xRLy \leftrightarrow (\forall a, b \in y) [xa \in L]\]
\[\leftrightarrow \quad y a \in L(1) \text{ and } b z \in L \]
\[\leftrightarrow \quad b y \in L(2) \]

is an equivalence relation in \(y \), satisfying the property:

if \((a_1, b_1) \in RL \) and \((a_2, b_2) \in RL \), then
\[(a_1 a_2, b_1 b_2) \in RL.\]

If it satisfies only the (i) (symb. \(RL' \)) or only the (ii) (symb. \(RL \)) then it is a right, resp. a left congruence. Finally, if \(y \) is a \(B \)-hypertringoid, then \(RL \) is a homomorphic relation.

Proposition 3. If \(y \) is a \(B \)-hypertringoid, then the quotient \(y / RL \) is a \(B \)-hypertringoid.

Since the linguistic hypertringoid is a \(B \)-hypertringoid we have:

Corollary 1. If \(L \) is a language of the linguistic hypertringoid, then the relation \(RL \) defined above is a homomorphic equivalence relation in it, while \(RL' \) and \(RL \) are a right and a left congruence relation as to the concatenation.

Moreover:

Theorem 2. If there exists a homomorphic equivalence relation \(R \) in \(y \) for which \(L \) is a union of classes, then \(rk(RL) \leq rk(R) \) and therefore \(rk(RL) < \infty \) then \(rk(RL) < \infty \). Similar inequalities hold, for \(RL' \) and \(RL \) if \(R \) is a right or a left congruence as to the multiplication.

Corollary 2. If the language \(L \) consists of a union of classes of a right congruence equivalence relation \(R \), for which \(rk(R) < \infty \) holds, then we have \(rk(RL) < \infty \). Respective results hold for the left congruence of the homomorphic equivalence relation.

We also have the Theorem:

Theorem 3. Let \(R \) be a homomorphic equivalence relation in \(y \) as to the hyperoperation and \(L \) a right congruence as to the multiplication and let \(L \) be a subset of \(y \) which is a union of classes modulo \(R \). Then there exists hypermoduloid \(M \) as to which \(L \) is acceptable, and \(rk(RL') \leq rk(R) \).

Proposition 4. If \(L \) is a subset of a \(B \)-hypertringoid, then there exists a hypermoduloid \(M \) as to which \(L \) is acceptable.

Proposition 5. If \(rk(RL') < \infty \), then \(L \) is acceptable from a finite hypermoduloid \(M \).

Corollary 3. If for the language \(L \) we have \(rk(RL') < \infty \), then there exists an automaton \(A \) which accepts \(L \) as its language.

Theorem 4. If \(L \) is an acceptable from \(M \) subset of \(y \), then there exists an equivalence relation \(R \) in \(y \) as to which \(L \) is a union of classes. If \(M \) is finite, then \(rk(R) < \infty \).

Corollary 4. If the language \(L \) is recognized by an automaton, then there exists an equivalence relation \(R \) as to which \(L \) is a union of classes and \(rk(R) < \infty \).

From the above Theorems 1-4, Propositions 1-5 and Corollaries 1-4 derives the known in the theory of languages theorem of Nerode [8]. Also Myhill [7] has come into similar conclusions with Nerode, sorty before him and so this Theorem is often referred to as the Theorem of Myhill-Nerode.

Theorem of Myhill-Nerode. If \(L \) is a language over an alphabet \(V \), then the following are equivalent:

(i) \(L \) is a language of an automaton.

(ii) there exists a right congruence equivalence relation \(R \in V^* \) for which \(L \) is a union of certain equivalence classes and \(rk(R) < \infty \).

(iii) \(rk(RL') < \infty \).

BIBLIOGRAPHY

